
UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

UniVista

Interfaces for Scientific Modeling Codes

Edward Peterlin

April 7 1999

UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

The Problem

• scientific modeling codes are beginning to be
shared much more extensively than before

• budgetary constraints

• inter-lab research cooperation

• most scientific modeling codes are Fortran
namelist based

• input is a long text file of names and values

• no documentation

• frequently no one aside from the author of the
program can help explain how to use it and
what it does

• difficult to properly model the research usage
patterns of modeling codes with a naive design

UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

Previous Work

• Amber (PPPL 1996)
• modeling codes are essentially a data management

problem

• UniVista I (PPPL 1997)
• same objectives as UniVista

• partial demo, then project leader quit and project was
abandoned and code lost

• PEST (Manickam 1998-9)
• GUI for a modeling code written in IDL

• similar graphical layout as UniVista: variables are associated
with UI input elements on the screen

• problems

• interface does not work for any modeling code aside from
PEST

• user can't adapt the interface to match their research
patterns

UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

The UniVista Approach

• create a flexible interface creation tool for any
environment and modeling code

• provide tools for three different types/needs of
users

• modeling code author

• should be easy to use to give incentive to create a GUI

• research designer

• provide a way to customize the interface to fit the style of
research they want to do with a modeling code

• research executor

• provide an easy way to run the modeling code varying
elements of a chosen research pattern

• allow the interface to mimic research patterns
• research builds off of previous research

UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

The UniVista Design

• flexibility
• achieved through proper data management with a database

• organizes and collects interfaces

• archives results for future reference and extensions

• portability through Java and Swing
• scientific community is quite diverse utilizing a variety of

machines

• by using Java 1.1 and Swing 1.0 as a foundation, UniVista
will run on all initial machines at the PPPL (WinNT,
Solaris, MacOS) as well as for other labs

• Swing offers the possiblity of having an identical look on
each platform at the same time as flexibility to use a
native 'look and feel'

UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

The UniVista Design

• distributed architecture
• there can be any number of researchers on a project

• researchers may not be in the same laboratory

• all of UniVista information is stored in standard relational
databases, including all of the information to recreate a
graphical user interface, interfacing through JDBC

• built in database security provides robust methods for
sharing and protecting sensitive data

UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

The UniVista Design

• support for research methodology
• interesting results frequently lead to further research on

what caused those results

• UniVista studies (the user interfaces to viewing and
changing values of the variables for a modeling code) are
flexible

• created off of descriptions of the modeling code

• can have unique code to check whether variables
satisfy parameters for a research area

• can be cloned off of a past run so researchers can
take a snapshot of the conditions that led to specific
results and quickly build an interface to allow them to
do further directed study

UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

Results

• the design aspect of UniVista is complete, and
the idea of GUIs being accepted for modeling
codes has been shown through the PEST
project

• development is along the path to having a
complete working model of the design

• the final UniVista working model will be tested
by creating a user interface for Degas, an ion
flow modeling code from the PPPL

UniVista: Interfaces for Scientific Modeling Codes
Edward Peterlin, April 7, 1999

Conclusions

• the proper user interface design tool for
scientific modeling codes needs to be adaptive
enough to respond to the particular work
patterns of researchers

• the most powerful user interfaces are those
which can be reconfigured to match the way the
user wishes to use them

• the UniVista design provides UI flexibility and
(through Java) flexibility to function in most any
scientific computing environment

	UniVista
	Interfaces for Scientific Modeling Codes
	Edward Peterlin
	April 7 1999

	The Problem
	scientific modeling codes are beginning to be shared much more extensively than before
	budgetary constraints
	inter-lab research cooperation

	most scientific modeling codes are Fortran namelist based
	input is a long text file of names and values
	no documentation

	frequently no one aside from the author of the program can help explain how to use it and what it does
	difficult to properly model the research usage patterns of modeling codes with a naive design

	Previous Work
	Amber (PPPL 1996)
	modeling codes are essentially a data management problem

	UniVista I (PPPL 1997)
	same objectives as UniVista
	partial demo, then project leader quit and project was abandoned and code lost

	PEST (Manickam 1998-9)
	GUI for a modeling code written in IDL
	similar graphical layout as UniVista: variables are associated with UI input elements on the screen
	problems
	interface does not work for any modeling code aside from PEST
	user can't adapt the interface to match their research patterns

	The UniVista Approach
	create a flexible interface creation tool for any environment and modeling code
	provide tools for three different types/needs of users
	modeling code author
	should be easy to use to give incentive to create a GUI

	research designer
	provide a way to customize the interface to fit the style of research they want to do with a modeling code

	research executor
	provide an easy way to run the modeling code varying elements of a chosen research pattern

	allow the interface to mimic research patterns
	research builds off of previous research

	The UniVista Design
	flexibility
	achieved through proper data management with a database
	organizes and collects interfaces
	archives results for future reference and extensions

	portability through Java and Swing
	scientific community is quite diverse utilizing a variety of machines
	by using Java 1.1 and Swing 1.0 as a foundation, UniVista will run on all initial machines at the PPPL (WinNT, Solaris, MacOS) as well as for other labs
	Swing offers the possiblity of having an identical look on each platform at the same time as flexibility to use a native 'look and feel'

	The UniVista Design
	distributed architecture
	there can be any number of researchers on a project
	researchers may not be in the same laboratory
	all of UniVista information is stored in standard relational databases, including all of the information to recreate a graphical user interface, interfacing through JDBC
	built in database security provides robust methods for sharing and protecting sensitive data

	The UniVista Design
	support for research methodology
	interesting results frequently lead to further research on what caused those results
	UniVista studies (the user interfaces to viewing and changing values of the variables for a modeling code) are flexible
	created off of descriptions of the modeling code
	can have unique code to check whether variables satisfy parameters for a research area
	can be cloned off of a past run so researchers can take a snapshot of the conditions that led to specific results and quickly build an interface to allow them to do further directed study

	Results
	the design aspect of UniVista is complete, and the idea of GUIs being accepted for modeling codes has been shown through the PEST project
	development is along the path to having a complete working model of the design
	the final UniVista working model will be tested by creating a user interface for Degas, an ion flow modeling code from the PPPL

	Conclusions
	the proper user interface design tool for scientific modeling codes needs to be adaptive enough to respond to the particular work patterns of researchers
	the most powerful user interfaces are those which can be reconfigured to match the way the user wishes to use them
	the UniVista design provides UI flexibility and (through Java) flexibility to function in most any scientific computing environment

